§6. Метод резолюций в логике высказываний

Метод резолюций применяется для доказательства того, что формула G является логическим следствием формул F_1, F_2, \ldots, F_n . При этом доказывается невыполнимость множества формул $\{F_1, F_2, \ldots, F_n, \neg G\}$.

Опр. (повторно). Литерал – атомарная формула (кроме 0 и 1), или ее отрицание.

Дизъюнкт (элементарная дизъюнкция) – литерал или дизъюнкция литералов.

Опр. Пустой дизъюнкт – дизъюнкт, не содержащий литералов.

Пустой дизъюнкт ложен при любой интерпретации.

Опр. Противоположные литералы – литералы X и $\neg X$.

Опр. Правилом резолюций в логике высказываний называется: из двух дизьюнктов $(X\vee H_1)$ и $(\neg X\vee H_2)$ выводится дизьюнкт $(H_1\vee H_2)$.

Опр. Пусть S множество дизъюнктов. Будем говорить, что дизъюнкт D_n выводится из S, если существует последовательность дизъюнктов D_1, D_2, \ldots, D_n , такая, что каждый D_i принадлежит S или получен по правилу резолюций из дизъюнктов среди $D_1, D_2, \ldots, D_{i-1}$.

Вывод D_n из S – эта последовательность $D_1, D_2, ..., D_n$.

Теорема.

Множество дизъюнктов S невыполнимо \Leftrightarrow из S выводится пустой дизъюнкт.

Теорема.

Множество дизъюнктов S невыполнимо \Leftrightarrow из S выводится пустой дизъюнкт.

Доказательство:

 \Leftarrow) Дано: из S выводится пустой дизъюнкт.

Заметим, что правило резолюций сохраняет истинность при некоторой интерпретации φ , т.к. если $\varphi(X \vee H_1) = 1$ и $\varphi(\neg X \vee H_2) = 1$, то либо $\varphi(H_1) = 1 \Rightarrow \varphi(H_1 \vee H_2) = 1$; либо $\varphi(H_1) = 0 \Rightarrow \varphi(X) = 1 \Rightarrow \varphi(\neg X) = 0 \Rightarrow \varphi(H_2) = 1 \Rightarrow \varphi(H_1 \vee H_2) = 1$.

(от противного) Предположим S выполнимо, т.е. существует интерпретация φ , при которой все дизъюнкты в S истинны. Тогда истинны все дизъюнкты в последовательности $D_1, D_2, \ldots, D_{n-1}, \square$.

Т.е. $\varphi(\Box) = 1$ — противоречие. S невыполнимо. \Rightarrow) Дано: S невыполнимо.

Проведём доказательство индукцией по параметру d(S) = сумма числа вхождений литералов в S минус число дизъюнктов в S плюс 1.

Пусть \square ∉ *S*. Тогда $d(S) \ge 1$.

Б.И. d(S) = 1. Т.е. все дизъюнкты в S состоят из одного литерала.

S невыполнимо ⇒ S содержит пару противоположных литералов X и ¬X. Тогда X, ¬X, □ — вывод пустого дизъюнкта из S.

Ш.И. d(S) > 1.

Пусть теорема верна для любого множества дизъюнктов T, где d(T) < d(S).

Пусть $S = \{D_1, D_2, ..., D_k\}, \ _{\Gamma Де} \ D_k = L \lor D' \ _{\Gamma} \ D' \ne \Box \ _{\Gamma} \ _{L - \ _{\Gamma} И T E P A J L}.$

Рассмотрим $S_1 = \{D_1, D_2, ..., D_{k-1}, L\}, S_2 = \{D_1, D_2, ..., D_{k-1}, D'\}.$

Эти множества невыполнимы, $d(S_1) < d(S)$, $d(S_2) < d(S)$. По предположению индукции: из S_1 выводится \square , из S_2 выводится \square .

Обозначим $A_1, A_2, ..., A_l = \square -$ вывод из S_1 , $B_1, B_2, ..., B_m = \square -$ вывод из S_2 .

(Если L не содержится в выводе пустого дизьюнкта из S_1 , то $A_1, A_2, \ldots, A_l = \square -$ вывод из S).

Пусть $A_i = L$, $B_j = D'$ (номера i и j – наименьшие).

Построим последовательность $B_1, B_2, \dots, B_{j-1}, B'_j, \dots, B'_m$, где $B'_j = D' \vee L, \ B'_t = \begin{cases} B_t \vee L, \text{ если } B_t \text{ зависит от } B_j \\ B_t, \text{ в противном случае} \end{cases}.$

Либо $B'_m = B_m = \square$. Получен вывод из S.

Либо $B'_{m} = B_{m} \vee L = L$.

Достроим последовательность $A_1, \ldots, A_{i-1}, B_1, \ldots, B'_m, A_{i+1}, \ldots, A_l = \square$. Получен вывод из S. Теорема доказана.

Лемма.

Пусть $D_1, D_2, ..., D_m$ – элементарные дизъюнкции.

Формула вида $(D_1 \& D_2 \& \dots \& D_m)$ выполнима \Leftrightarrow множество $\{D_1, D_2, \dots, D_m\}$ выполнимо.

Схема применения метода резолюций.

Дано: $F_1, F_2, ..., F_n, G$.

- 1. Формулы $F_1, F_2, ..., F_n, \neg G$ приводятся к КНФ.
- 2. Все получившиеся дизьюнкты собирают в множество S.
- 3. Строится вывод \square из S.

Пример.

$$F_1 = X \rightarrow Y \lor Z$$
, $F_2 = Z \rightarrow W$, $F_3 = \neg W$, $G = X \rightarrow Y$.

1. $F_1 \equiv \neg X \lor Y \lor Z$. (Один дизъюнкт)

 $F_2 \equiv \neg Z \lor W$. (Один дизьюнкт)

 $F_3 = \neg W$. (Один дизъюнкт)

 $\neg G \equiv \neg (\neg X \lor Y) \equiv X \& \neg Y$. (Два дизъюнкта)

Пример.

$$F_1 = X \rightarrow Y \lor Z$$
, $F_2 = Z \rightarrow W$, $F_3 = \neg W$, $G = X \rightarrow Y$.

- 1. $F_1 \equiv \neg X \lor Y \lor Z$. (Один дизъюнкт)
- $F_2 \equiv \neg Z \lor W$. (Один дизъюнкт)
- $F_3 = \neg W$. (Один дизъюнкт)
- $\neg G \equiv \neg (\neg X \lor Y) \equiv X \& \neg Y$. (Два дизъюнкта)
- 2. $S \equiv {\neg X \lor Y \lor Z, \neg Z \lor W, \neg W, X, \neg Y}$.

2. $S = {\neg X \lor Y \lor Z, \neg Z \lor W, \neg W, X, \neg Y}$.

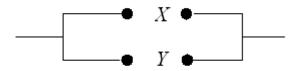
3. $\neg X \lor Y \lor Z$, $\neg Z \lor W$, $\neg X \lor Y \lor W$, $\neg W$, $\neg X \lor Y$, X, Y, $\neg Y$, \square .

§7. Контактные схемы.

Опр. Контактом называется устройство, которое может находиться в одном из двух состояний: замкнут или разомкнут.

Опр. Последовательным соединением двух контактов называется соединение вида:

Опр. Параллельным соединением двух контактов называется соединение вида:



Опр. Контактной схемой называется набор контактов, соединенных между собой, в котором выделены вход и выход:



Пусть состояние «контакт X замкнут» соответствует значению 1, «контакт X разомкнут» соответствует значению 0, т.е. значению истинности атомарной формулы X.

Тогда последовательное соединение соответствует (X & Y), параллельное соединение соответствует ($X \lor Y$).

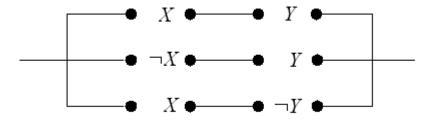
Вся контактная схема соответствует формуле логики высказываний.

Замечание: любая формула соответствует контактной схеме, при условии, что отрицание атомарной формулы — это тоже контакт.

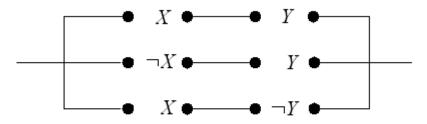
Опр. Две контактные схемы называются эквивалентными, если они соответствуют равносильным формулам.

Типовая задача 1: для данной контактной схемы найти эквивалентную схему, содержащую меньше контактов.

Пример.



Пример.



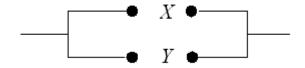
Схеме соответствует формула $E = (V, Pr, V) \times (V, Pr, V$

$$F = (X \& Y) \lor (\neg X \& Y) \lor (X \& \neg Y).$$

$$F = (X \& Y) \lor (\neg X \& Y) \lor (X \& \neg Y) \equiv ((X \lor \neg X) \& Y) \lor (X \& \neg Y) \equiv$$

$$\equiv (1 \& Y) \lor (X \& \neg Y) \equiv Y \lor (X \& \neg Y) \equiv$$

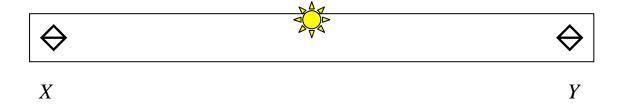
$$\equiv (Y \lor X) \& (Y \lor \neg Y) \equiv Y \lor X.$$



Типовая задача 2: составить наименьшую контактную схему, управляющую электрическим освещением или замком.

Пример.

В длинном коридоре имеются два выключателя для освещения. Составить контактную схему, которая позволяет включать или выключать свет с любого выключателя.



Пусть X и Y — атомарные переменные, соответствующие выключателю 1 и 2.

Тогда искомая контактная схема соответствует формуле F, зависящей от X и Y.

Составим таблицу истинности для F.

X	Y	F
0	0	
0	1	
1	0	
1	1	

X	Y	F
0	0	0
0	1	1
1	0	1
1	1	0

Тогда $F = (X \& \neg Y) \lor (\neg X \& Y)$.

