§9. Решетки

Опр. Алгебраической системой называется $(A, \varphi_1, ..., \varphi_k, \rho_1, ..., \rho_m)$, где $\varphi_1, ..., \varphi_k$ — операции на $A, \rho_1, ..., \rho_m$ — отношения на A.

Опр. Универсальной алгеброй (или алгеброй) называется $(A, \varphi_1, ..., \varphi_k)$, где $\varphi_1, ..., \varphi_k$ – операции на A.

Опр. (как алгебраическая система)

Решеткой называется (A, \land, \lor) , где \land, \lor – бинарные операции «пересечения» и «объединения», удовлетворяющие свойствам:

1), 2) коммутативность:

$$x \wedge y = y \wedge x;$$
 $x \vee y = y \vee x;$

3), 4) ассоциативность:

$$(x \wedge y) \wedge z = x \wedge (y \wedge z); \quad (x \vee y) \vee z = x \vee (y \vee z);$$

5), 6) идемпотетность:

$$x \wedge x = x;$$
 $x \vee x = x;$

7), 8) законы поглощения:

$$x \wedge (x \vee y) = x$$
; $x \vee (x \wedge y) = x$.

Замечание:

Пусть (A, \wedge, \vee) – решетка.

Определим на A отношение \leq : $x \leq y \Leftrightarrow x \land y = x$.

Тогда (A, ≤) – ч.у.м..

- 1) Рефлексивность: $x \le x$, т.к. $x \land x = x$.
- 2) Антисимметричность: если $x \le y$ и $y \le x$, то $x \land y = x$ и $y \land x = y$. Тогда x = y.
- 3) Транзитивность: если $x \le y$ и $y \le z$, то $x \land y = x$ и $y \land z = y$.

Тогда $x \wedge z = (x \wedge y) \wedge z = x \wedge (y \wedge z) = x \wedge y = x$, т.е $x \leq z$

В случае, когда отношение \leq : $x \leq y \Leftrightarrow x \vee y = y$, получаем то же самое ч.у.м. (A, \leq) .

Вопрос: всегда ли ч.у.м. соответствует решетке?

Опр. Инфинумом двух элементов x и y (точной нижней гранью) называется наибольший элемент z: $z \le x$ и $z \le y$.

Обозначение: $\inf (x, y)$.

Опр. Инфинумом двух элементов x и y (точной нижней гранью) называется наибольший элемент z: $z \le x$ и $z \le y$.

Обозначение: inf (x, y).

Опр. Супремумом двух элементов x и y (точной верхней гранью) называется наименьший элемент z: $x \le z$ и $y \le z$.

Обозначение: $\sup (x, y)$.

Опр. (как ч.у.м)

Ч.у.м. (A, \leq) называется решеткой, если для любых $x, y \in A$ существует единственный inf (x, y) и единственный $\sup (x, y)$.

Замечание: Если ч.у.м. (A, \leq) является решеткой, то определив операции $x \wedge y = \inf(x, y)$, $x \vee y = \sup(x, y)$, получим решетку (A, \wedge, \vee) как алгебраическую систему.

Опр. Диаграммой решетки называется диаграмма ч.у.м..

Пример 1. Решетка подгрупп.

Пусть (A, \oplus) – группа вычетов по модулю 6.

Найдем все её подгруппы, используя таблицу Кэли:

\oplus	0	1	2	3	4	5
0	0	1	2	3	4	5
1	1	2	3	4	5	0
1 2 3	2	3	4	5	0	1
3	3	4	5	0	1	2
5	4	5	0	1	2	3
5	5	0	1	2	3	4

 $B_1 = \{0\};$

 $B_1 = \{0\};$

 $B_2 = \{0, 1, 2, 3, 4, 5\};$

```
B_1 = \{0\};
```

 $B_2 = \{0, 1, 2, 3, 4, 5\};$

 $B_3 = \{0, 2, 4\};$

 $B_4 = \{0, 3\}.$

$$B_1 = \{0\} = <0>;$$

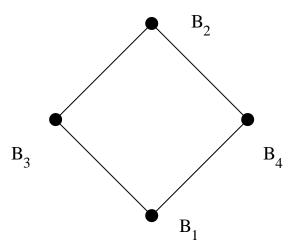
$$B_2 = \{0, 1, 2, 3, 4, 5\} = <1>;$$

$$B_3 = \{0, 2, 4\} = \langle 2 \rangle;$$

$$B_4 = \{0, 3\} = <3>$$
.

Построим диаграмму ч.у.м. (
$$\{B_1, B_2, B_3, B_4\}$$
, \subseteq):

Построим диаграмму ч.у.м. ($\{B_1, B_2, B_3, B_4\}$, \subseteq):



Решетка подгрупп

Пример 2. Решетка разбиений.

Пусть $M = \{1, 2, 3\}$. Найдем все отношения эквивалентности на M.

$$\mathcal{G}_1 = \{K_{11}\},$$
 где $K_{11} = \{1, 2, 3\};$

$$\Theta_1 = \{K_{11}\},$$
 где $K_{11} = \{1, 2, 3\};$

$$\Theta_2 = \{K_{21}, K_{22}\}, \Gamma Д e K_{21} = \{1\}, K_{22} = \{2, 3\};$$

$$\mathcal{G}_1 = \{K_{11}\},$$
 где $K_{11} = \{1, 2, 3\};$

$$\Theta_2 = \{K_{21}, K_{22}\},$$
 где $K_{21} = \{1\}, K_{22} = \{2, 3\};$
 $\Theta_3 = \{K_{31}, K_{32}\},$ где $K_{31} = \{2\}, K_{32} = \{1, 3\};$
 $\Theta_4 = \{K_{41}, K_{42}\},$ где $K_{41} = \{3\}, K_{42} = \{1, 2\};$

$$\mathcal{G}_1 = \{K_{11}\},$$
 где $K_{11} = \{1, 2, 3\};$

$$\mathcal{O}_1 = \{K_{11}\}, \text{ I.d. } K_{11} = \{1, 2, 3\},$$

$$\mathcal{O}_1 = \{K_{11}\}, \text{ I.d. } K_{11} = \{1, 2, 3\},$$

$$\mathcal{G}_2 = \{K_{21}, K_{22}\},$$
где $K_{21} = \{1\}, K_{22} = \{2, 3\};$

$$\mathcal{G}_2 = \{K_{21}, K_{22}\},$$
где $K_{22} = \{2\}, K_{22} = \{1, 3\};$

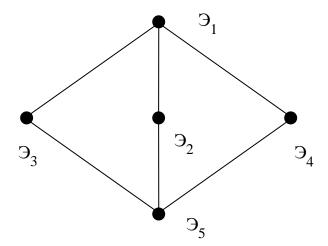
$$\mathcal{G}_3 = \{K_{31}, K_{32}\},$$
 где $K_{31} = \{2\}, K_{32} = \{1, 3\};$ $\mathcal{G}_4 = \{K_{41}, K_{42}\},$ где $K_{41} = \{3\}, K_{42} = \{1, 2\};$

$$\mathcal{G}_4 = \{K_{41}, K_{42}\},$$
 где $K_{41} = \{3\}, K_{42} = \{1, 2\};$

$$\Theta_5 = \{K_{51}, K_{52}, K_{53}\}, \Gamma \Pi e K_{51} = \{1\}, K_{52} = \{2\}, K_{53} = \{3\}.$$

Построим диаграмму ч.у.м. ($\{\partial_1, \partial_2, \partial_3, \partial_4, \partial_5\}$, \subseteq).

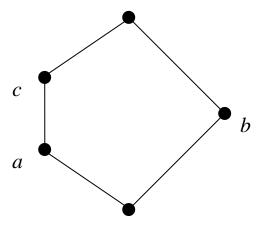
 $\Theta_i \subseteq \Theta_j$, если каждый класс из разбиения Θ_i содержится целиком в каком-нибудь классе Θ_j .



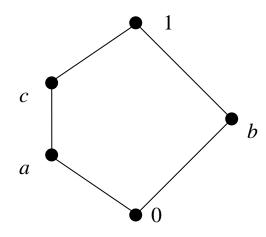
Решетка разбиений

§10. Модулярные, дистрибутивные решетки. Булевы алгебры Опр. Решетка (A, \wedge, \vee) называется модулярной, если для $a \le c$ выполняется $(a \lor b) \land c = (a \land c) \lor (b \land c) = a \lor (b \land c)$.

Пример немодулярной решетки:

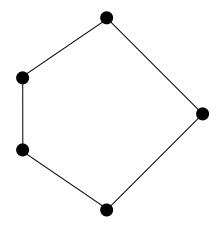


Найдем значение $(a \lor b) \land c =$



$$(a \lor b) \land c = 1 \land c = c$$
;

$$a \lor (b \land c) = a \lor 0 = a$$
; Ho $c \ne a$.



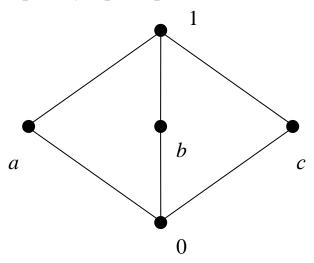
Пентагон.

Опр. Пусть (A, \land, \lor) – решетка. Подрешеткой называется $B \subseteq A$, замкнутое относительно \land и \lor (т.е. (B, \land, \lor) – тоже решетка).

Теорема (критерий модулярности, без доказательства). Решетка модулярная ⇔ она не содержит подрешеток вида «пентагон». Опр. Решетка (A, \wedge, \vee) называется дистрибутивной, если выполняются $(a \vee b) \wedge c = (a \wedge c) \vee (b \wedge c)$ и $(a \wedge b) \vee c = (a \vee c) \wedge (b \vee c)$.

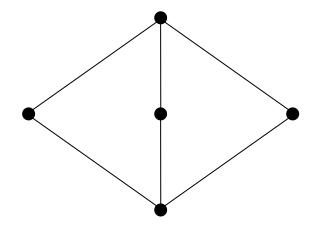
Замечание: если решетка дистрибутивная, то она модулярная, обратное не верно.

Пример модулярной решетки, не являющейся дистрибутивной:



$$(a \lor b) \land c = 1 \land c = c$$
;

$$(a \wedge c) \vee (b \wedge c) = 0 \vee 0 = 0$$
; Ho $c \neq 0$.



Диамант

Теорема (критерий дистрибутивности, без доказательства). Решетка дистрибутивная ⇔ она не содержит подрешеток вида «пентагон» и «диамант». Опр. Решетка (A_1, \wedge_1, \vee_1) изоморфна решетке (A_2, \wedge_2, \vee_2) , если существует биекция $\delta: A_1 \to A_2$, сохраняющая обе операции, т.е. $\delta(a \wedge_1 b) = \delta(a) \wedge_2 \delta(b)$ и $\delta(a \vee_1 b) = \delta(a) \vee_2 \delta(b)$.

Теорема (без доказательства).

Всякая дистрибутивная решетка изоморфна решетке подмножеств (не обязательно всех) некоторого множества.

Опр. Булевой алгеброй называется $(A, \land, \lor, \bar{\ }, 0, 1)$, где $|A| \ge 2$, $\land, \lor -$ бинарные операции, $\bar{\ } -$ унарная операция «дополнения» (или «отрицания»), 0, 1 – нуль-арные операции, для которых выполняются:

- 1) (A, \wedge, \vee) дистрибутивная решетка;
- 2) законы де Моргана

Теорема (без доказательства).

 $(2^A, \cap, \cup, \bar{}, \varnothing, A)$ является булевой алгеброй.