§3. Сети. Алгоритм Дейкстры поиска расстояний от вершины до всех остальных.

Опр. Сетью называется орграф G, с весовой функцией μ на дугах (μ (e) — неотрицательное число).

Синонимы: вес дуги, длина дуги, пропускная способность дуги.

В сетях используют другое определение полустепеней исхода и захода.

Опр. Полустепень исхода вершины u – число $\rho_{out}(u)$ равное сумме весов дуг, выходящих из u.

Полустепень захода вершины u — число $\rho_{in}(u)$ равное сумме весов дуг, входящих в u.

Утверждение. Сумма полустепеней исхода всех вершина графа равна сумме полустепеней захода всех вершин.

Опр. Длиной пути называется сумма весов дуг в пути. Расстоянием от вершины u до вершины v называется длина кратчайшего (u-v)-пути.

Обозначение: d(u, v).

Если (u - v)-пути не существует, то $d(u, v) = \infty$.

Задача поиска расстояний от фиксированой вершины до всех остальных.

Вспомогательные обозначения для описания алгоритма Дейкстры.

 v_0 – фиксированная вершина.

$$v_1, v_2, ..., v_{n-1}$$
 – остальные вершины.

$$d_i = d(v_0, v_i)$$
, для всех $i = 1, ..., n-1$.

Определим двухместную функцию для пар вершин:

$$a(v,v') = \begin{cases} \mu(v,v'), & ecnu(v,v') \in E \\ \infty, & ecnu(v,v') \notin E \end{cases}.$$

Алгоритм Дейкстры.

- 1) Собрать множество $S = V \setminus \{v_0\}$.
- Присвоить $d_i = a(v_0, v_i)$ для всех i = 1, ..., n-1.
- 2) Если |S| > 1, то выбрать в S вершину V_k , для которой d_k наименьшая (среди всех вершин в S).
- 3) Собрать множество $S = S \setminus \{v_k\}$.

Присвоить $d_i = \min(d_i, d_k + a(v_k, v))$ для всех $v \in S$. Перейти к 2).

4) Если |S| = 1 — остановить алгоритм.

Выход – $d_1, d_2, ..., d_{n-1}$.

Пример.

Теорема (без док-ва).

Массив чисел $d_1, d_2, ..., d_{n-1}$ на выходе алгоритма — набор кратчайших расстояний от v_0 до $v_1, v_2, ..., v_{n-1}$.

Сложность по времени алгоритма Дейкстры имеет порядок $O(n^2 + m) = O(n^2)$ Сложность по памяти — ?. §4. Потоки в сетях. Алгоритм поиска максимального потока в сети.

Опр. Источником в сети (G, μ) называется вершина u, для которой $\rho_{in}(u)=0,\; \rho_{out}(u)>0.$

Стоком в сети (G, μ) называется вершина u, для которой $\rho_{in}(u) > 0$, $\rho_{out}(u) = 0$.

В данном параграфе используются сети с единственным источником и единственным стоком.

Пусть сеть (G, μ) имеет единственный источник a и единственный сток b.

Опр. Потоком в сети называется функция φ определенная на дугах графа и принимающая неотрицательные действительные значения, такая, что выполнены условия:

- 1) ϕ (e) ≤ μ (e) для каждой дуги e ∈ E;
- 2) $\sum_{(u,v)\in E} \varphi(u,v) = \sum_{(w,u)\in E} \varphi(w,u)$ для каждой вершины u, кроме источника и стока.

Потоком дуги е называется φ (e).

Величиной потока называется $\sum_{(a,v)\in E} \varphi(a,v) = \sum_{(u,b)\in E} \varphi(u,b)$.

Задача: для заданной сети найти максимальный поток, т.е. поток с максимальной величиной.

Пример. Компьютерная сеть. Опр. Пусть сеть (G, μ) имеет единственный источник a и единственный сток b.

Разрезом называется множество дуг E', такое, что любой путь из a в b содержит хотя бы одну дугу из E'.

Пропускной способностью разреза E' называется $\sum_{e \in E'} \mu(e)$.

Разрез называется минимальным, если его пропускная способность минимальна.

Теорема (Форда-Фалкерсона, без док-ва).

В любой сети величина максимального потока равна пропускной способности минимального разреза.

Пример применения теоремы Форда- Фалкерсона.

Замечание: если в сети есть дуги, вес которых — рациональное нецелое число, то задачу поиска максимального потока можно переформулировать для сети с целочисленными весами.

Пример.

Алгоритм поиска максимального потока в целочисленной сети (G, μ) с источником a и стоком b.

1) Присвоить $\varphi(e) = 0$ для каждой дуги e.

Собрать $T = \{$ все пути из a в b, не имеющие общих дуг $\}$.

Если $T = \emptyset$, то закончить алгоритм.

Если $T \neq \emptyset$, то для каждого пути $e_1, e_2, ..., e_k$ присвоить

$$\varphi(e_1) = \varphi(e_2) = \dots = \varphi(e_k) = \min(\mu(e_1), \mu(e_2), \dots, \mu(e_k))$$

2) Построить сеть (G', μ') , с множеством вершин V и множеством дуг

Е': если $e \in E$ и (μ (e) $-\varphi(e)$) > 0, то $e \in E'$, μ '(e) $= (\mu$ (e) $-\varphi(e)$). Для каждой дуги $e \in E$, у которой $\varphi(e) > 0$, добавляем в Е'

«обратную к e» дугу e_{re} , $\mu'(e_{re}) = \varphi(e)$.

При появлении кратных дуг, заменяем на одну дугу, вес которой равен сумме весов кратных дуг.

Для сети (G', μ ') построить поток φ ' как в шаге 1).

3) Присвоить $\varphi = \varphi + \varphi'$. Вернуться к шагу 2).

Пример.